La Trobe
sensors-20-04200-v2.pdf (744.59 kB)

Control plane optimisation for an SDN-Based WBAN Framework to support healthcare applications

Download (744.59 kB)
journal contribution
posted on 13.08.2021, 02:19 by Khalid Hasan, Khandakar Ahmed, Kamanashis Biswas, Saiful Islam, A S M KayesA S M Kayes, SM Riazul Islam
Software-Defined Networking (SDN) offers an abstract view of the network and assists network operators to control the network traffic and the associated network resources more effectively. For the past few years, SDN has shown a lot of merits in diverse fields of applications, an important one being the Wireless Body Area Network (WBAN) for healthcare services. With the amalgamation of SDN with WBAN (SDWBAN), the patient monitoring and management system has gained much more flexibility and scalability compared to the conventional WBAN. However, the performance of the SDWBAN framework largely depends on the controller which is a core element of the control plane. The reason is that an optimal number of controllers assures the satisfactory level of performance and control of the network traffic originating from the underlying data plane devices. This paper proposes a mathematical model to determine the optimal number of controllers for the SDWBAN framework in healthcare applications. To achieve this goal, the proposed mathematical model adopts the convex optimization method and incorporates three critical SDWBAN factors in the design process: number of controllers, latency and number of SDN-enabled switches (SDESW). The proposed analytical model is validated by means of simulations in Castalia 3.2 and the outcomes indicate that the network achieves high level of Packet Delivery Ratio (PDR) and low latency for optimal number of controllers as derived in the mathematical model.

History

Publication Date

01/01/2020

Journal

Sensors

Volume

20

Issue

15

Article Number

4200

Pagination

19p.

Publisher

MDPI AG

ISSN

1424-8220

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.