It is unclear whether military shoes (combat boots and sports shoes) attenuate loading rate or affect force transfer during walking. Therefore, this study compared ground reaction forces (GRF) related to impact and force transfer between combat boots, military sports shoes, and running shoes. Ten army recruits walked over a walkway with two force plates embedded. GRF were measured when walking barefoot (for data normalisation) and with combat boots, military sports shoes, and running shoes. Loading rate, first and second peak forces, and push-off rate of force were computed along with temporal analysis of waveforms. Reduced loading rate was observed for the running shoe compared to the combat boot (p = 0.02; d = 0.98) and to the military sports shoe (p = 0.04; d = 0.92). The running shoe elicited a smaller second peak force than the combat boot (p < 0.01; d = 0.83). Walking with military shoes and combat boots led to larger force transfer than running shoes, potentially due to harder material used in midsole composition (i.e., styrene-butadiene rubber). Combat boots did not optimise load transmission and may lead, in a long-term perspective, to greater injury risk.