La Trobe

Co-assembly of helical β3-peptides: a self-assembled analogue of a statistical copolymer

Download (1.05 MB)
journal contribution
posted on 2023-04-21, 04:54 authored by Claire Buchanan, C Garvey, Patrick PerlmutterPatrick Perlmutter, Adam MechlerAdam Mechler
Unnatural peptide self-assembly offers the means to design hierarchical nanostructures of controlled geometries, chemical function and physical properties. N-acyl β3 peptides, where all residues are unnatural amino acids, are able to form helical fibrous structures by a head-to-tail assembly of helical monomers, extending the helix via a three point supramolecular hydrogen bonding motif. These helical nanorods were shown to be stable under a wide range of physical conditions, offering a self-assembled analogue of polymeric fibres. Hitherto the self-assembly has only been demonstrated between identical monomers; however the self-assembly motif is sequence-independent, offering the possibility of hetero-assembly of different peptide monomers. Here we present a proof of principle study of head-to-tail co-assembly of two different helical unnatural peptides Ac-β3[WELWEL] and Ac-β3[LIA], where the letters denote the β3 analogues of natural amino acids. By atomic force microscopy imaging it was demonstrated that the homo-assembly and co-assembly of these peptides yield characteristically different structures. Synchrotron small angle X-ray scattering experiments have confirmed the presence of the fibres in the solution and the averaged diameters from modelled data correlate well to the results of AFM imaging. Hence, there is evidence of co-assembly of the fibrous superstructures; given that different monomers may be used to introduce variations into chemical and physical properties, the results demonstrate a self-assembled analogue of a statistical co-polymer that can be used in designing complex functional nanomaterials.

History

Publication Date

2017-09-26

Journal

Pure and Applied Chemistry

Volume

89

Issue

12

Pagination

8p. (p. 1809-1816)

Publisher

De Gruyter

ISSN

0033-4545

Rights Statement

© 2017 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Usage metrics

    Journal Articles

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC