La Trobe
1177963_Yilmaz,A_2021.pdf (2.34 MB)

Climate change impacts on inflows into lake eppalock reservoir from upper campaspe catchment

Download (2.34 MB)
journal contribution
posted on 2021-09-07, 02:44 authored by Abdullah YilmazAbdullah Yilmaz, S Atabay, KH Amou Assar, MA Imteaz
Climate change has significant effects on societies and ecosystems. Due to the strong link between climate and the hydrological cycle, water resources is one of the most affected fields by climate change. It is of great importance to investigate climate change effects on streamflows by producing future streamflow projections under different scenarios to create adaptation measures and mitigate potential impacts of climate change. The Upper Campaspe Catchment (UCC), located at North Central Victoria in Australia, is a significant catchment as it provides a large portion of total inflow to the Lake Eppalock Reservoir, which supplies irrigation to the Campaspe Irrigation district and urban water to Bendigo, Heathcote, and Ballarat cities. In this study, climate change effects on monthly streamflows in the UCC was investigated using high resolution future climate data from CSIRO and MIROC climate models in calibrated IHACRES hydrological model. The IHACRES model was found to be very successful to simulate monthly streamflow in UCC. Remark-able streamflow reductions were projected based on the climate input from both models (CSIRO and MIROC). According to the most optimistic scenario (with the highest projected streamflows) by the MIROC-RCP4.5 model in near future (2035–2064), the Upper Campaspe River will com-pletely dry out from January to May. The worst scenario (with the lowest streamflow projection) by the CSIRO-RCP8.5 model in the far future (2075–2104) showed that streamflows will be produced only for three months (July, August, and September) throughout the year. Findings from this study indicated that climate change will have significant adverse impacts on reservoir inflow, operation, water supply, and allocation in the study area.

History

Publication Date

2021-07-24

Journal

Hydrology

Volume

8

Issue

3

Article Number

108

Pagination

15p.

Publisher

MDPI

ISSN

2306-5338

Rights Statement

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC