La Trobe

Climate Change Impacts on Rainwater Tank’s Potential Water Savings, Efficiency and Reliability Presenting Relationship Between ‘Seasonality Index’ and Water Savings Efficiency

Download (1.5 MB)
journal contribution
posted on 2023-12-15, 02:22 authored by MA Imteaz, MS Khan, Abdullah YilmazAbdullah Yilmaz, A Shanableh
The paper presents potential impacts of climate change on rainwater tanks outcomes such as water savings, reliability and water savings efficiency under two projected climate change scenarios; RCP4.5 and RCP8.5 utilising a case study using rainfall data from four stations within the city of Brisbane, Australia. Historical rainfall data were collected from the Australian Bureau of Meteorology website for the selected stations. Projected daily rainfall data were collected from Australian government data portal for the same stations within Brisbane. Using an earlier developed daily water balance model, eTank potential annual water savings were calculated for several weather and climate change scenarios with varied roof areas and rainwater demandValues of ‘Seasonality Index (SI)’, a commonly used factor representing rainfall variability within a year, were explored to validate earlier developed relationships between SI and water savings efficiency through rainwater tanks. It is found that in most cases water savings in future periods are expected to decrease and such decrease is not necessarily attributed to the expected decrease in rainfall amounts in future, rather also affected by future reductions in rainwater tank reliability. Linear relationships between potential future water savings and reliabilities for all the stations are found. Relationship between SI and water savings efficiency was established, and it is found that the relationship slightly varies with an earlier developed relationship using historical data. Compared to earlier established relationship, for lower SI values water savings efficiency is expected to become better, while for higher SI values the water savings efficiency is expected to become worse. Also, an increase of roof area from 100 m2 to 200 m2 will cause an average increase of water savings efficiency by 25% and an increase of rainwater usage from 200 L/day to 300 L/day will cause an average increase of water savings efficiency by 20%.

History

Publication Date

2023-09-01

Journal

Water Resources Management

Volume

37

Pagination

(p. 4345-4361)

Publisher

Springer

ISSN

0920-4741

Rights Statement

© The Author(s) 2023 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC