Chronic methamphetamine interacts with BDNF Val66Met to remodel psychosis pathways in the mesocorticolimbic proteome
journal contribution
posted on 2021-03-15, 03:01 authored by David GreeningDavid Greening, M Notaras, Maoshan Chen, Rong Xu, Joel D Smith, Lesley SimLesley Sim, Richard SimpsonRichard Simpson, Andrew HillAndrew Hill, Maarten van den BuuseMaarten van den Buuse© 2019, The Author(s), under exclusive licence to Springer Nature Limited. Methamphetamine (Meth) abuse has reached epidemic proportions in many countries and can induce psychotic episodes mimicking the clinical profile of schizophrenia. Brain-derived neurotrophic factor (BDNF) is implicated in both Meth effects and schizophrenia. We therefore studied the long-term effects of chronic Meth exposure in transgenic mice engineered to harbor the human BDNFVal66Met polymorphism expressed via endogenous mouse promoters. These mice were chronically treated with an escalating Meth regime during late adolescence. At least 4 weeks later, all hBDNFVal66Met Meth-treated mice exhibited sensitization confirming persistent behavioral effects of Meth. We used high-resolution quantitative mass spectrometry-based proteomics to biochemically map the long-term effects of Meth within the brain, resulting in the unbiased detection of 4808 proteins across the mesocorticolimbic circuitry. Meth differentially altered dopamine signaling markers (e.g., Dat, Comt, and Th) between hBDNFVal/Val and hBDNFMet/Met mice, implicating involvement of BDNF in Meth-induced reprogramming of the mesolimbic proteome. Targeted analysis of 336 schizophrenia-risk genes, as well as 82 growth factor cascade markers, similarly revealed that hBDNFVal66Met genotype gated the recruitment of these factors by Meth in a region-specific manner. Cumulatively, these data represent the first comprehensive analysis of the long-term effects of chronic Meth exposure within the mesocorticolimbic circuitry. In addition, these data reveal that long-term Meth-induced brain changes are strongly dependent upon BDNF genetic variation, illustrating how drug-induced psychosis may be modulated at the molecular level by a single genetic locus.
History
Publication Date
2021-08-01Journal
Molecular PsychiatryVolume
26Issue
8Pagination
17 p. (p. 4431-4447)Publisher
SpringerISSN
1359-4184Rights Statement
The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.Publisher DOI
Usage metrics
Categories
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC