La Trobe

Chainsaw-Carved Cavities Better Mimic the Thermal Properties of Natural Tree Hollows than Nest Boxes and Log Hollows

Download (3.97 MB)
journal contribution
posted on 2023-05-10, 05:26 authored by Stephen GriffithsStephen Griffiths, Pia Lentini, Kristin SemmensKristin Semmens, Simon Watson, Linda Lumsden, Kylie RobertKylie Robert
The creation of supplementary habitats that effectively mimic the physical and thermal characteristics of natural tree hollows should be a key priority for landscape restoration and biodiversity offset programs. Here, we compare the thermal profiles of natural tree hollows with three types of artificial hollows designed for small marsupial gliders and tree-roosting insectivorous bats: (1) 'chainsaw hollows' carved directly into the trunks and branches of live trees, (2) 'log hollows', and (3) plywood nest boxes. Chainsaw hollows had thermal profiles that were similar to natural tree hollows: they were consistently warmer than ambient conditions at night, while remaining cooler than ambient during the day. In contrast, glider and bat boxes had the opposite pattern of heating and cooling, being slightly cooler than ambient at night and substantially hotter during the day. Glider log hollows had greater variation in internal temperatures compared to natural hollows and chainsaw hollows, but fluctuated less than glider boxes. Our results provide the first empirical evidence that artificial hollows carved directly into live trees can produce thermally stable supplementary habitats that could potentially buffer hollow-dependent fauna from weather extremes; whereas, poorly insulated plywood nest boxes produce lower-quality thermal environments. Together these findings provide positive impetus for stakeholders involved in conservation management and biodiversity offset programs to consider trialing chainsaw hollows in situations where target fauna require well-insulated supplementary habitats.

History

Publication Date

2018-04-28

Journal

Forests

Volume

9

Issue

5

Article Number

235

Pagination

27p. (p. 1-27)

Publisher

MDPI

ISSN

1999-4907

Rights Statement

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC