La Trobe

Calorie restriction partially attenuates sickness behavior induced by viral mimetic poly I:C

Download (4.51 MB)
journal contribution
posted on 2023-11-24, 05:24 authored by Simone De Luca, Leah KivivaliLeah Kivivali, Ken Chong, Alice Kirby, Adam Lawther, Jason NguyenJason Nguyen, Matthew HaleMatthew Hale, Stephen KentStephen Kent
Calorie restriction (CR) has been shown to extend the mean and maximum lifespan in both preclinical and clinical settings. We have previously demonstrated that CR attenuates lipopolysaccharide (LPS)-induced fever and sickness behavior. CR also leads to reductions in pro-inflammatory and increases in anti-inflammatory profiles. LPS is a bacterial mimetic; however, few studies have explored this phenomenon utilizing a viral mimetic, such as polyinosinic:polycytidylic acid (poly I:C). Dose-dependently, poly I:C induced an increase in core body temperature (Tb), with the largest dose (5000 µg/kg) resulting in a 1.62 °C ( ± 0.23 °C) Tb increase at 7 h post-injection in ad libitum mice and was associated with reduced home-cage locomotor activity. We then investigated the effect of 50% CR for 28 days to attenuate fever and sickness behavior induced by a poly I:C (5000 µg/kg) viral immune challenge. CR resulted in the partial attenuation of fever and sickness behavior measures post-poly I:C. The freely fed, control mice demonstrated a 2.02 °C ( ± 0.22 °C) increase in Tb at 7 h post-injection compared to the CR poly I:C group which demonstrated an increase in Tb of 0.94 °C ( ± 0.27 °C). Locomotor patterns post-injection were different, CR mice displayed a reduction in activity during the light phase, and the control group displayed a reduction during the dark phase. CR moderately attenuated the neuroinflammatory response with a reduction in microglial density in the ventromedial nucleus of the hypothalamus. The fever and sickness behavior attenuation seen after CR may be driven by similar anti-inflammatory processes as after LPS; however, further investigation is required.

History

Publication Date

2024-02-04

Journal

Behavioural Brain Research

Volume

457

Article Number

114715

Pagination

9p.

Publisher

Elsevier

ISSN

0166-4328

Rights Statement

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC