La Trobe

CBM: An IOT Enabled LiDAR Sensor for In-Field Crop Height and Biomass Measurements

Download (8.17 MB)
journal contribution
posted on 2022-09-08, 04:21 authored by BP Banerjee, German SpangenbergGerman Spangenberg, Surya KantSurya Kant
The phenotypic characterization of crop genotypes is an essential, yet challenging, aspect of crop management and agriculture research. Digital sensing technologies are rapidly advancing plant phenotyping and speeding-up crop breeding outcomes. However, off-the-shelf sensors might not be fully applicable and suitable for agricultural research due to the diversity in crop species and specific needs during plant breeding selections. Customized sensing systems with specialized sensor hardware and software architecture provide a powerful and low-cost solution. This study designed and developed a fully integrated Raspberry Pi-based LiDAR sensor named CropBioMass (CBM), enabled by internet of things to provide a complete end-to-end pipeline. The CBM is a low-cost sensor, provides high-throughput seamless data collection in field, small data footprint, injection of data onto the remote server, and automated data processing. The phenotypic traits of crop fresh biomass, dry biomass, and plant height that were estimated by CBM data had high correlation with ground truth manual measurements in a wheat field trial. The CBM is readily applicable for high-throughput plant phenotyping, crop monitoring, and management for precision agricultural applications.

History

Publication Date

2022-01-01

Journal

Biosensors

Volume

12

Issue

1

Article Number

16

Pagination

19p.

Publisher

MDPI

ISSN

2079-6374

Rights Statement

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC