La Trobe
- No file added yet -

Bioorganic fertilizer enhances soil suppressive capacity against bacterial wilt of tomato

Download (1.37 MB)
journal contribution
posted on 2021-01-06, 00:54 authored by L Liu, C Sun, S Liu, R Chai, W Huang, X Liu, Caixian TangCaixian Tang, Y Zhang
© 2015 Liu et al. Tomato bacterial wilt caused by Ralstonia solanacearum is one of the most destructive soilborne diseases. Many strategies have been taken to improve soil suppressiveness against this destructive disease, but limited success has been achieved. In this study, a novel bioorganic fertilizer revealed a higher suppressive ability against bacterial wilt compared with several soil management methods in the field over four growing seasons from March 2011 to July 2013. The application of the bioorganic fertilizer significantly (P<0.05) reduced disease incidence of tomato and increased fruit yields in four independent trials. The association among the level of disease incidence, soil physicochemical and biological properties was investigated. The soil treated with the bioorganic fertilizer increased soil pH value, electric conductivity, organic carbon, NH4+-N, NO3--N and available K content, microbial activities and microbial biomass carbon content, which were positively related with soil suppressiveness. Bacterial and actinomycete populations assessed using classical plate counts were highest, whereas R. solanacearum and fungal populations were lowest in soil applied with the bioorganic fertilizer. Microbial community diversity and richness were assessed using denaturing gel gradient electrophoresis profile analysis. The soil treated with the bioorganic fertilizer exhibited higher bacterial community diversity but lower fungal community diversity. Redundancy analysis showed that bacterial community diversity and richness negatively related with bacterial wilt suppressiveness, while fungal community richness positively correlated with R. solanacearum population. We concluded that the alteration of soil physicochemical and biological properties in soil treated with the bioorganic fertilizer induced the soil suppressiveness against tomato bacterial wilt.

Funding

This work was financially supported by the Chinese Ministry of Agriculture (201103004), the National Key Project on Science and Technology of China (2012BAC17B02) and the Project of Scientific Emissary of Zhejiang Province (2012T2T209). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

History

Publication Date

2015-01-01

Journal

PLoS One

Volume

10

Issue

4

Article Number

e0121304

Pagination

16p.

Publisher

Public Library of Science

ISSN

1932-6203

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.