Biomechanical changes after anterior cruciate ligament reconstruction (ACLR) may be detrimental to long-term knee-joint health. We used pattern recognition to characterise biomechanical differences during the landing phase of a single-leg forward hop after ACLR. Experimental data from 66 individuals 12-24 months post-ACLR (28.2 ± 6.3 years) and 32 controls (25.2 ± 4.8 years old) were input into a musculoskeletal modelling pipeline to calculate joint angles, joint moments and muscle forces. These waveforms were transformed into principal components (features), and input into a pattern recognition pipeline, which found 10 main distinguishing features (and 8 associated features) between ACLR and control landing biomechanics at significance α= 0.05. Our process identified known biomechanical characteristics post-ACLR: smaller knee flexion angle; less knee extensor moment; lower vasti, rectus femoris and hamstrings forces. Importantly, we found more novel and less well-understood adaptations: smaller ankle plantar flexor moment; lower soleus forces; and altered patterns of knee rotation angle, hip rotator moment and knee abduction moment. Crucially, we identified, with high certainty, subtle aberrations indicating landing instability in the ACLR group for: knee flexion and internal rotation angles and moments; hip rotation angles and moments; and lumbar rotator and bending moments. Our findings may benefit rehabilitation and assessment for return-to-sport 12–24 months post-ACLR.
Funding
Open Access funding enabled and organized by CAUL and its Member Institutions. Funding was provided by National Health & Medical Research Council (Dora Lush Postgraduate Scholarship and R.D. Wright Biomedical #1053521).