La Trobe
1169688_Narciso,J_2021.pdf (3.99 MB)

Biochemical and Functional Characterization of GALT8, an Arabidopsis GT31 β-(1,3)-Galactosyltransferase That Influences Seedling Development

Download (3.99 MB)
journal contribution
posted on 01.07.2021, 05:10 by JO Narciso, W Zeng, K Ford, ER Lampugnani, John Humphries, I Austarheim, A van de Meene, Tony Bacic, Monika Doblin
Arabinogalactan-proteins (AGPs) are members of the hydroxyproline-rich glycoprotein (HRGP) superfamily, a group of highly diverse proteoglycans that are present in the cell wall, plasma membrane as well as secretions of almost all plants, with important roles in many developmental processes. The role of GALT8 (At1g22015), a Glycosyltransferase-31 (GT31) family member of the Carbohydrate-Active Enzyme database (CAZy), was examined by biochemical characterization and phenotypic analysis of a galt8 mutant line. To characterize its catalytic function, GALT8 was heterologously expressed in tobacco leaves and its enzymatic activity tested. GALT8 was shown to be a β-(1,3)-galactosyltransferase (GalT) that catalyzes the synthesis of a β-(1,3)-galactan, similar to the in vitro activity of KNS4/UPEX1 (At1g33430), a homologous GT31 member previously shown to have this activity. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) confirmed the products were of 2-6 degree of polymerisation (DP). Previous reporter studies showed that GALT8 is expressed in the central and synergid cells, from whence the micropylar endosperm originates after the fertilization of the central cell of the ovule. Homozygous mutants have multiple seedling phenotypes including significantly shorter hypocotyls and smaller leaf area compared to wild type (WT) that are attributable to defects in female gametophyte and/or endosperm development. KNS4/UPEX1 was shown to partially complement the galt8 mutant phenotypes in genetic complementation assays suggesting a similar but not identical role compared to GALT8 in β-(1,3)-galactan biosynthesis. Taken together, these data add further evidence of the important roles GT31 β-(1,3)-GalTs play in elaborating type II AGs that decorate AGPs and pectins, thereby imparting functional consequences on plant growth and development.

Funding

WZ, EL, KF, JH, AvdM, MD, and AB acknowledge the support of a grant from the Australia Research Council (ARC) to the ARC Centre of Excellence in Plant Cell Walls [CE1101007]. WZ, MD, and AB acknowledge the support from the Overseas Expertise Introduction Project for Discipline Innovation "111" project (D18008). JON acknowledges the support of the University of Melbourne MRS and MIFRS scholarships. EL and JH acknowledge funding from the University of Melbourne, Faculty of Science.

History

Publication Date

25/05/2021

Journal

Frontiers in Plant Science

Volume

12

Article Number

ARTN 678564

Pagination

16p.

Publisher

FRONTIERS MEDIA SA

ISSN

1664-462X

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.