La Trobe

Australian native Glycine clandestina seed microbiota hosts a more diverse bacterial community than the domesticated soybean Glycine max

Download (1.75 MB)
journal contribution
posted on 2023-06-28, 06:06 authored by Ankush Chandel, Ross Mann, Jatinder KaurJatinder Kaur, I Tannenbaum, S Norton, Jacqueline EdwardsJacqueline Edwards, German Spangenberg, Tim SawbridgeTim Sawbridge
Background: Plant microbiome composition has been demonstrated to change during the domestication of wild plants and it is suggested that this has resulted in loss of plant beneficial microbes. Recently, the seed microbiome of native plants was demonstrated to harbour a more diverse microbiota and shared a common core microbiome with modern cultivars. In this study the composition of the seed-associated bacteria of Glycine clandestina is compared to seed-associated bacteria of Glycine max (soybean). Results: The seed microbiome of the native legume Glycine clandestina (crop wild relative; cwr) was more diverse than that of the domesticated Glycine max and was dominated by the bacterial class Gammaproteobacteria. Both the plant species (cwr vs domesticated) and individual seed accessions were identified as the main driver for this diversity and composition of the microbiota of all Glycine seed lots, with the effect of factor “plant species” exceeded that of “geographical location”. A core microbiome was identified between the two Glycine species. A high percentage of the Glycine microbiome was unculturable [G. clandestina (80.8%) and G. max (75.5%)] with only bacteria of a high relative abundance being culturable under the conditions of this study. Conclusion: Our results provided novel insights into the structure and diversity of the native Glycine clandestina seed microbiome and how it compares to that of the domesticated crop Glycine max. Beyond that, it also increased our knowledge of the key microbial taxa associated with the core Glycine spp. microbiome, both wild and domesticated. The investigation of this commonality and diversity is a valuable and essential tool in understanding the use of native Glycine spp. for the discovery of new microbes that would be of benefit to domesticated Glycine max cultivars or any other economically important crops. This study has isolated microbes from a crop wild relative that are now available for testing in G. max for beneficial phenotypes.

Funding

This research was supported by the Agriculture Victoria Research.

History

Publication Date

2022-11-16

Journal

Environmental Microbiomes

Volume

17

Issue

1

Article Number

56

Pagination

17p. (p. 1-17)

Publisher

Springer Nature

ISSN

2524-6372

Rights Statement

© The Author(s) 2022. Licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the licence, and indicate if changes were made. The images or other third party material in this article are included in the article's licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view the licence: http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC