La Trobe

An artificial intelligence framework for explainable drift detection in energy forecasting

Download (827.15 kB)
Accurate energy consumption forecasting is crucial for reducing operational costs, achieving net-zero carbon emissions, and ensuring sustainable buildings and cities of the future. Despite the frequent use of Artificial Intelligence (AI) algorithms for learning energy consumption patterns and predictions in Building Science, relying solely on these techniques for energy demand prediction addresses only a fraction of the challenge. A drift in energy usage can lead to inaccuracies in these AI models and subsequently to poor decision-making and interventions. While drift detection techniques have been reported, a reliable and robust approach capable of explaining identified discrepancies with actionable insights has not been discussed in extant literature. Hence, this paper presents an Artificial Intelligence framework for energy consumption forecasting with explainable drift detection, aimed at addressing these challenges. The proposed framework is composed of energy embeddings, an optimized dimensional model integrated within a data warehouse, and scalable cloud implementation for effective drift detection with explainability capability. The framework is empirically evaluated in the real-world setting of a multi-campus, mixed-use tertiary education setting in Victoria, Australia. The results of these experiments highlight its capabilities in detecting concept drift, adapting forecast predictions, and providing an interpretation of the changes using energy embeddings.

Funding

This work is supported by the Department of Climate Change, Energy, the Environment and Water of the Australian Federal Government, as part of the International Clean Innovation Researcher Networks (ICIRN) program, grant number ICIRN000077.

History

Publication Date

2024-09-01

Journal

Energy and AI

Volume

17

Article Number

100403

Pagination

12p.

Publisher

Elsevier

ISSN

2666-5468

Rights Statement

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license: http://creativecommons.org/licenses/bync-nd/4.0/

Usage metrics

    Journal Articles

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC