La Trobe
1109162_Gupta,S_2021.pdf (1.99 MB)
Download file

Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions

Download (1.99 MB)
journal contribution
posted on 2021-07-26, 05:21 authored by S Gupta, M Schillaci, R Walker, Penelope SmithPenelope Smith, M Watt, U Roessner
Salinization of soil with sodium chloride ions inhibits plant functions, causing reduction of yield of crops. Salt tolerant microorganisms have been studied to enhance crop growth under salinity. This review describes the performance of endophytic fungi applied to crops as a supplement to plant genetics or soil management to alleviate salt stress in crops. This is achieved via inducing systemic resistance, increasing the levels of beneficial metabolites, activating antioxidant systems to scavenge ROS, and modulating plant growth phytohormones. Colonization by endophytic fungi improves nutrient uptake and maintains ionic homeostasis by modulating ion accumulation, thereby restricting the transport of Na+ to leaves and ensuring a low cytosolic Na+:K+ ratio in plants. Participating endophytic fungi enhance transcripts of genes encoding the high Affinity Potassium Transporter 1 (HKT1) and the inward-rectifying K+ channels KAT1 and KAT2, which play key roles in regulating Na+ and K+ homeostasis. Endophytic-induced interplay of strigolactones play regulatory roles in salt tolerance by interacting with phytohormones. Future research requires further attention on the biochemical, molecular and genetic mechanisms crucial for salt stress resistance requires further attention for future research. Furthermore, to design strategies for sustained plant health with endophytic fungi, a new wave of exploration of plant-endophyte responses to combinations of stresses is mandatory.


Publication Date



Plant and Soil: An International Journal on Plant-Soil Relationships






26p. (p. 219-244)


Springer Nature



Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.