La Trobe
83453_Wang,T_2016.pdf (1.85 MB)
Download file

A hybrid expectation maximisation and MCMC sampling algorithm to implement Bayesian mixture model based genomic prediction and QTL mapping

Download (1.85 MB)
journal contribution
posted on 05.05.2022, 23:28 by T Wang, Yi-Ping Phoebe ChenYi-Ping Phoebe Chen, Philip BowmanPhilip Bowman, ME Goddard, BJ Hayes
Background: Bayesian mixture models in which the effects of SNP are assumed to come from normal distributions with different variances are attractive for simultaneous genomic prediction and QTL mapping. These models are usually implemented with Monte Carlo Markov Chain (MCMC) sampling, which requires long compute times with large genomic data sets. Here, we present an efficient approach (termed HyB_BR), which is a hybrid of an Expectation-Maximisation algorithm, followed by a limited number of MCMC without the requirement for burn-in. Results: To test prediction accuracy from HyB_BR, dairy cattle and human disease trait data were used. In the dairy cattle data, there were four quantitative traits (milk volume, protein kg, fat% in milk and fertility) measured in 16,214 cattle from two breeds genotyped for 632,002 SNPs. Validation of genomic predictions was in a subset of cattle either from the reference set or in animals from a third breeds that were not in the reference set. In all cases, HyB_BR gave almost identical accuracies to Bayesian mixture models implemented with full MCMC, however computational time was reduced by up to 1/17 of that required by full MCMC. The SNPs with high posterior probability of a non-zero effect were also very similar between full MCMC and HyB_BR, with several known genes affecting milk production in this category, as well as some novel genes. HyB_BR was also applied to seven human diseases with 4890 individuals genotyped for around 300 K SNPs in a case/control design, from the Welcome Trust Case Control Consortium (WTCCC). In this data set, the results demonstrated again that HyB_BR performed as well as Bayesian mixture models with full MCMC for genomic predictions and genetic architecture inference while reducing the computational time from 45 h with full MCMC to 3 h with HyB_BR. Conclusions: The results for quantitative traits in cattle and disease in humans demonstrate that HyB_BR can perform equally well as Bayesian mixture models implemented with full MCMC in terms of prediction accuracy, but with up to 17 times faster than the full MCMC implementations. The HyB_BR algorithm makes simultaneous genomic prediction, QTL mapping and inference of genetic architecture feasible in large genomic data sets.

Funding

The authors acknowledge the support from Dairy Futures CRC project.

History

Publication Date

01/01/2016

Journal

BMC Genomics

Volume

17

Issue

1

Article Number

744

Pagination

21p.

Publisher

Springer Nature

ISSN

1471-2164

Rights Statement

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.