Context: Nitrogen (N) deficiency is the single biggest cause of the yield gap in Australian wheat production. Nitrogen fertiliser is a costly input and prediction of crop seasonal demand for N in Australia's variable climate is difficult, so farmers are conservative with investment in N fertiliser, leading to under-fertilisation and over reliance on soil organic N. Objective: We evaluated the ability of different N decision-making systems to close yield gaps, reduce mining of soil organic N and minimise accumulation of soil nitrate. Methods: A 5-year (2018–2022) field experiment was conducted in a rainfed Mediterranean environment at Curyo, Victoria in Australia with different N decision-making systems, namely N bank (NB) targets (100, 125 and 150 kg N ha−1), Yield Prophet® (YP) at different yield probabilities (25, 50, 75 and 100 %), annual Australian national average N rate (NA45, 45 kg N ha−1), replacement of N in exported grain (R) and a nil control, as treatments in a randomised complete block design with four replicates. Results: After five years, YP25, YP50, YP75 and NB125 applied on average 49, 30, 4 and 18 kg ha−1 more N per year than NA45, respectively, and achieved or exceeded economic yield (EY), i.e. 80 % of water-limited potential yield (PYw), as opposed to 72 % of PYw achieved in NA45. These systems also had a higher 5-year mean gross margin (AUD 469–550 ha−1) compared to the NA45 (AUD 401 ha−1). Positive 5-year partial N balance (total N input minus total N exported in grain over 5 years) was observed only in the YP25, YP50, NB150 and NB125 treatments (4–93 kg N ha−1). However, apart from NB125 these treatments had consistently higher soil mineral N levels to 1-m depth compared to NA45 and <2 marginal return:cost ratio. Also nitrate content at 0.7–1.0 m depth in the YP25 and NB150 treatments were consistently higher (p <0.05) than that in NA45. Conclusions: Low soil nitrate level, achievement of EY and higher gross margin in the NB125 compared to NA45 makes it the N management system best suited for this environment. Additionally, the positive partial N balance (4 kg N ha−1) observed in the system suggests that it is less likely to mine soil organic N compared to NA45 (-39 kg ha−1). Significance: Adoption by growers of the best performing systems should reduce grain yield gaps and reduce mining of soil organic N with no increased risk of environmental N loss.
Funding
This research was funded from 2018 to 2019 by La Trobe University, Australia through the Grant Ready scheme of the Securing Food, Water and the Environment Research Focus Area, from 2019 to 2022 by the Mallee Catchment Management Authority through funding from the Australian Government’s National Landcare Program, and from 2022 by Grains Research and Development Corporation investment through National Grower Network project N banking strategies to manage variable and unpredictable nitrogen demand in the MRZ of the Southern Region (PROC9176566).