La Trobe

File(s) stored somewhere else

Please note: Linked content is NOT stored on La Trobe and we can't guarantee its availability, quality, security or accept any liability.

The emerging role of the RNA-binding protein SFPQ in neuronal function and neurodegeneration

journal contribution
posted on 15.11.2020, 23:15 by Yee Wa Lim, Dylan James
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. RNA-binding proteins (RBPs) are a class of proteins known for their diverse roles in RNA biogenesis, from regulating transcriptional processes in the nucleus to facilitating translation in the cytoplasm. With higher demand for RNA metabolism in the nervous system, RBP misregulation has been linked to a wide range of neurological and neurodegenerative diseases. One of the emerging RBPs implicated in neuronal function and neurodegeneration is splicing factor proline-and glutamine-rich (SFPQ). SFPQ is a ubiquitous and abundant RBP that plays multiple regulatory roles in the nucleus such as paraspeckle formation, DNA damage repair, and various transcriptional regulation processes. An increasing number of studies have demonstrated the nuclear and also cytoplasmic roles of SFPQ in neurons, particularly in post-transcriptional regulation and RNA granule formation. Not surprisingly, the misregulation of SFPQ has been linked to pathological features shown by other neurodegenerative disease-associated RBPs such as aberrant RNA splicing, cytoplasmic mislocalization, and aggregation. In this review, we discuss recent findings on the roles of SFPQ with a particular focus on those in neuronal development and homeostasis as well as its implications in neurodegenerative diseases.

History

Publication Date

28/09/2020

Journal

International Journal of Molecular Sciences

Volume

21

Issue

19

Article Number

7151

Pagination

16p. (p. 1-16)

Publisher

MDPI

ISSN

1661-6596

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.

Licence

Exports