Growing big data has posed a great challenge for machine learning algorithms. To cope with big data, the algorithm has to be both efficient and accurate. Although evolutionary computation has been successfully applied to many complex machine learning tasks, its ability to handle big data is limited. In this paper, we proposed a dynamic self-organising swarm algorithm to learn an effective set of prototypes for big high-dimensional datasets in an unsupervised manner. The novelties of this new algorithm are the energy-based fitness function, the adaptive topological neighbourhood, the growing/shrinking capability, and the efficient learning scheme. Experiments with well-known datasets show that the proposed algorithm can maintain a very compact set of prototypes and achieve competitive predictive performance as compared to other algorithms in the literature. The analyses also show that prototypes generated by the proposed algorithms have a stronger separatability compared to those from other prototype generation algorithms.
History
Publication Date
2020-08-01
Proceedings
2020 IEEE Congress on Evolutionary Computation (CEC). 2020 Conference Proceedings.
Publisher
IEEE
Place of publication
Piscataway, USA
Pagination
8p.
ISBN-13
9781728169293
Name of conference
IEEE Congress on Evolutionary Computation
Location
Glasgow, UK
Starting Date
2020-07-19
Finshing Date
2020-07-24
Rights Statement
The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.